A generic data-driven sequential clustering algorithm determining activity skeletons

Wim Ectors, Bruno Kochan, Luk Knapen, Davy Janssens, Tom Bellemans

ANT 2016
Table of contents

- Motivation and introduction
- Methodology
 - Data description
 - Sequential clustering algorithm
 - Sensitivity analysis
- Results
- Discussion and conclusion
Motivation and introduction

- ABM: need for transportation as derived demand from people’s activity patterns
 - Mandatory (inflexible) activities scheduled before more flexible activities
 - Conventional mandatory activities: work & education
- HTS Flanders, Belgium (OVG):
 - Only 45% contains a ‘mandatory’ activity
 - No structure in other 55%?

Data-driven approach to reveal the real basic structure of individuals’ schedules: skeleton schedule
Methodology – Data description

- HTS of Flanders, Belgium
 - Single-day, including weekends
 - Only out-of-home activities
 - 17,300 individuals
 - 13,200 at least one trip
- Weights
 - 14 (of 2600 different) most frequent day-long schedules:
 - 45% of observations (each other pattern <1%)
 - 55% more complex behavior → skeleton schedules??
- Pre-processing
 - Consecutive activities merged
Methodology – Sequential clustering algorithm

- Main idea:
 - Find common activity patterns in otherwise highly heterogeneous activity schedules
 - $\Rightarrow H-S-H-X-H$?
 - Optimization of location X ?

<table>
<thead>
<tr>
<th>H</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Shopping</td>
</tr>
<tr>
<td>R</td>
<td>Recreation</td>
</tr>
<tr>
<td>Se</td>
<td>Services</td>
</tr>
<tr>
<td>X</td>
<td>‘Wildcard’</td>
</tr>
</tbody>
</table>
Methodology – Sequential clustering algorithm

Pre-processing
- Input survey data
- Conformity check data
- Extract list of single-day schedules
- Generate all possible wildcard-containing schedules for each given schedule

Sequential clustering
- Calculate frequencies
- Select wildcard-containing schedule with highest frequency
- Assign to compliant given schedule and move to output dataset
- Max # iterations reached or all given schedules assigned?
 - Yes
 - No

Post-processing
- Remove outliers
- Generate output tables and figures
Methodology – Overview of the research

OVG

Sequential clustering [3 steps]

Skeletons

ID3 DT training

DT

Prediction by DT

Predicted Skeleton

Settings

Obtaining Skeletons

Socio-demo extract

Socio-demo

Regression

Regression coefficients

CMA

Compare
Methodology – Sequential clustering algorithm

- Pre-processing
 - Cleaning
 - Remove schedules with >x activities?
 - ∀ schedules: find all possible wildcard-containing schedules according to settings:
 - Minimum # activities not replaced by X?
 - H cannot become X?
 - W cannot become X?
 - Merge consecutive X?

\[N = \sum_{r=s}^{n} \frac{n!}{r! (n - r)!} \]

- Sequential clustering
 - determine the largest groups of unique wildcard-containing patterns
Methodology – Sequential clustering algorithm

- Post-processing
 - Exclude *odd patterns* ("outliers")
 - ⑥ Cutoff after cum. freq. of x %

![Diagram](image-url)

Outliers according to wildcard-containing schedule frequency, based on OVG 3.0-4.5

Wildcard-containing schedules (from left to right: most frequently to least frequently occurring). Only a few labels are shown on the axis.
Methodology – Sensitivity analysis

- Effect of ①, ②, ③, ④, ⑤, ⑥ ...?
- Ultimate goal: predictions
 - Use DTs as in ABMs such as FEATHERS, ALBATROSS
- Two stages
 1. Generate many sets of skeletons with different setting combinations
 - 2520 sets were generated
 2. Use ID3 algorithm to train DT and estimate accuracy of skeleton classification
 - ⑦ minimum number of records in a leaf?
 - ± 44,000 DTs fitted
 - Training (75%) and test set (25%) CMAs
Methodology – Overview of the research

- OVG
 - Settings
 - Sequential clustering [3 steps]
 - Skeletons
 - ID3 DT training

- Socio-demo extract
 - Regression
 - CMA
 - Regression coefficients

- DT
 - Predicted Skeleton
 - Prediction by DT
 - Compare

Obtaining Skeletons
Methodology – Sensitivity analysis

- Influence of ①, ②, ③, ④, ⑤, ⑥, ⑦ on classification accuracy?
- Analyzed in regression model (adj. R^2 0.82)
 - Minimum # activities not replaced by X: inversely correlated
 - Cutoff after cum. freq. of x %: inversely correlated
 - Remove schedules with >x activities from input dataset: Marginal effect on CMA
 - H cannot become X: marginal negative effect
- ‘Practical optimum’ set of settings yields test set CMA of 32% (↔ null model accuracy 13.3%)
Results

- **Two runs**

 1. ① Minimum # activities not replaced by $X = 3$
 - 733 skeletons from 2,600 schedules
 2. ① Minimum # activities not replaced by $X = 2$
 - 341 skeletons from 2,600 schedules
 - 14 skeletons = 70% of all records (↔ 45% in original data)
Discussion and conclusion

- Only single-day data is limitation
- Temporal component not accounted for
- Number of trips affected by merging of consecutive X

Yet:
- Activity-distribution in X quite complex; common travel behavior extracted
- Algorithm universal and simple
- Data driven
- Compatible with current ABM approaches
Thank you

Wim Ectors*
Bruno Kochan
Luk Knapen
Davy Janssens
Tom Bellemans

*wim.ectors@uhasselt.be